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ABSTRACT: An artificial neural network (ANN) model is
established for predicting the fiber diameter of melt-blown
nonwoven fabrics from the processing parameters. An at-
tempt is made to study the effect of the number of the
hidden layers and the hidden layer neurons to minimize the
prediction error. The artificial neural network with three
hidden layers (5, 2, and 3 neurons in the first, second, and
third hidden layer, respectively) yields the minimum pre-
diction error, and thus, is determined as the preferred net-
work. The square of correlation coefficient of measured and

predicted fiber diameters shows the good performance of
the model. Using the established ANN model, computer
simulations of the effects of the processing parameter on the
fiber diameter are carried out. The results show great pros-
pects for this research in the field of computer-assisted de-
sign of melt-blowing technology. © 2006 Wiley Periodicals, Inc.
J Appl Polym Sci 101: 4275–4280, 2006
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INTRODUCTION

The melt-blowing process is characterized by the ca-
pability of producing nonwoven fabrics with microfi-
ber structure. In our previous study, the physics
model of polymer’s air drawing in the melt-blowing
process was established for predicting the fiber diam-
eter.1–3 The predicted fiber diameters showed good
agreement with the experimental results.2,3

As a nonlinear problem, the fiber diameters can also
be predicted by an alternative modeling method, i.e.,
by using the empirical model, which includes statisti-
cal regression model, artificial neural network (ANN),
etc. ANN models have been shown to provide good
approximations in the presence of noisy data and
smaller number of experimental points, and the as-
sumptions under which ANN models work are less
strict than those for regression models.4 Therefore,
over the past decades, the artificial neural networks
have been used for modeling various textile nonlinear
problems.5–8 However, the applications of ANN for
predicting the fiber diameter of nonwoven fabrics are
very scanty. In this study, an ANN model is estab-

lished for predicting the fiber diameter of melt-blown
nonwoven fabrics. The effects of the number of the
hidden layers and the hidden layer neurons will be
investigated to obtain the optimum network structure.
The effects of the processing parameters on the fiber
diameter will also be studied using the established
ANN model.

EXPERIMENTAL

Experiments are carried out on the melt-blowing non-
woven equipment of Donghua University. It is known
that fiber diameters of melt-blown nonwoven fabrics
will be influenced by both the processing parameters
and the die parameters. However, it is difficult to
change the die parameters in our present experiments
because dies can hardly be fabricated at the university.
Therefore, only the processing parameters are consid-
ered in this investigation; in the meantime, the die
parameters are fixed at follows: die width � 0.7 mm,
die length � 200 mm, slot width � 0.2 mm, head
width � 0.5 mm, angle between the slot and the
spinneret axis � 30°, and spinneret diameter � 0.3
mm. The polymer used is polypropylene, with the
melt-flow index of 54. The processing parameters con-
cerned are the polymer flow rate (0.018, 0.035, 0.070
g/s), initial polymer temperature (230, 260, 290°C),
initial air velocity (78, 168, 235 m/s), and initial air
temperature (280, 310, 340°C). A group of fundamen-
tal parameters is set up, which are the polymer flow
rate of 0.035 g/s, the initial polymer temperature of
260°C, the initial air velocity of 168 cm/s, and the
initial air temperature of 310°C. When one processing
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parameter varies, the other three are kept as the fun-
damental values. The experimental program is shown
in Table I.

The image analysis method is employed to measure
the fiber diameter. The images of nonwoven samples
are acquired by the QUESTER three-dimensional
video frequency microscope, and then processed by
the image analysis software named Image-Pro Plus to
measure the fiber diameter. Further details about the
fiber diameter testing can be found in one of our
papers.3

ARTIFICIAL NEURAL NETWORK MODELING

An artificial neural network is an information-process-
ing system, where processing occurs at many simple
elements called neurons organized in layers and
where signals are passed between neurons over con-
nection links. Each connection link has an associated
weight that multiplies the signal transmitted, and each
neuron applies a transfer function to its net input (sum
of weighted input signals) to determine its output
signal. Figure 1 shows the structure of a multilayer

TABLE I
Experimental Program

Testing
number

Polymer flow
rate (g/s)

Initial polymer
temperature

(°C)

Initial air
velocity
(m/s)

Initial air
temperature

(°C)

1 0.035 260 168 310
2 0.018 260 168 310
3 0.070 260 168 310
4 0.035 230 168 310
5 0.035 290 168 310
6 0.035 260 78 310
7 0.035 260 235 310
8 0.035 260 168 280
9 0.035 260 168 340

Figure 1 Structure of a multilayer artificial neural network.
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ANN. This ANN has one input layer with k neurons to
process the k independent variables, n � 1 hidden
layers with m, p, q, . . . neurons, respectively, and one
output layer with r neurons to provide the r responses.
The weights of the first hidden layer modify the in-
formation transmitted from the input layer to the first
hidden layer, that of the second, the information trans-
mitted form the first hidden layer to the second hid-
den layer, and the like. And, the last hidden layer’s
weights modify the information transmitted from the
last hidden layer to the output layer. The mathemati-
cal expression of the ANN model with one input layer,
n � 1 hidden layers, and one output layer is given by

Ŷ � ��Ŵn
T�n�1�Ŵn�1

T �n�2 . . . �Ŵ3
T�2�Ŵ2

T�1�Ŵ1X

� b̂1� � b̂2� � b̂3� � . . . b̂n�1� � b̂n (1)

where Ŷ is the vector of predicted responses; X is the
vector of inputs; Ŵ1 is a matrix containing the weights
on the connection links between the input layer and
the first hidden layer; Ŵi

T (i � 2, 3,. . . , n � 1) is the
transpose of Ŵi, which is a matrix containing weights
for the links between the i � 1th hidden layer and the
ith hidden layer; and Ŵn

T is the transpose of Ŵn, which
is a matrix containing weights for the links between
the last hidden layer and the output layer; b̂i (i � 1,
2,. . . , n � 1) and b̂n are vectors containing a special
type of weights called biases that modify the net input
for the ith hidden layers and output layer, respec-
tively; �i is the transfer function of the neurons of the
ith hidden layer; and � is the transfer function of the
neurons in the output layer. Obtaining the weights in
Ŵi and b̂i (i � 1, 2,. . . , n) is commonly done with the
error back propagation algorithm, which is, in essence,
similar to a least squares reduction. The neurons in the
hidden layer usually use hyperbolic tangent function
as the transfer function (eq. (2)), and the neurons in the
output layer use pure linear function (eq. (3)).4

��x� �
ex � e�x

ex � e�x (2)

��x� � x (3)

A feed forward artificial neural network is created
in this research. Inputs of the ANN are the polymer
flow rate, initial polymer temperature, initial air ve-
locity, and initial air temperature, while the output is
the fiber diameter. The transfer functions of the hid-
den layer and output layer neurons are the hyperbolic
tangent function and pure linear function, respec-
tively. The ANN is trained with the help of the error
back propagation algorithm, using the Matlab Neural
Network Toolbox. The training function used is
Trainlm, which is based on the Levenberg-Marquardt

TABLE II
Average and Maximum Prediction Errors

of Different ANN Structures

No. ANN structure Average error Variation coefficient

1 4–5-3–3-1 2.7735 0.8828
2 4–5-3–2-1 2.7778 0.7838
3 4–5-2–3-1 2.7999 0.7252
4 4–5-2–2-1 2.7484 0.7503
5 4–4-4–3-1 2.7016 0.7676
6 4–4-4–2-1 3.0098 0.7756
7 4–4-3–4-1 2.8398 0.7850
8 4–4-3–3-1 2.8527 0.7864
9 4–4-3–2-1 2.8684 0.7816

10 4–4-2–4-1 3.0755 0.7790
11 4–4-2–3-1 3.1476 0.8532
12 4–4-2–2-1 3.2615 0.9122
13 4–3-5–3-1 3.0848 0.7601
14 4–3-5–2-1 2.7861 0.7754
15 4–3-4–4-1 3.1072 0.8121
16 4–3-4–3-1 2.7871 0.7703
17 4–3-4–2-1 2.9987 0.8062
18 4–3-3–5-1 2.7829 0.8804
19 4–3-3–4-1 3.2067 0.7742
20 4–3-3–3-1 2.7772 0.7997
21 4–3-3–2-1 3.0749 0.7921
22 4–3-2–5-1 2.7792 0.8000
23 4–3-2–4-1 3.2129 0.8467
24 4–3-2–3-1 2.8819 0.8271
25 4–3-2–2-1 3.1312 0.7542
26 4–2-5–3-1 2.9320 0.8265
27 4–2-5–2-1 2.7859 0.7771
28 4–2-4–4-1 2.9840 0.7807
29 4–2-4–3-1 3.0065 0.7739
30 4–2-4–2-1 2.7709 0.7934
31 4–2-3–5-1 3.0473 0.9145
32 4–2-3–4-1 3.2583 0.8265
33 4–2-3–3-1 3.2641 0.7806
34 4–2-3–2-1 2.8853 0.7533
35 4–2-2–5-1 3.0219 0.9776
36 4–2-2–4-1 3.0496 0.9164
37 4–2-2–3-1 2.7750 0.7674
38 4–2-2–2-1 2.7647 0.8791
39 4–5-4–1 2.9994 0.7723
40 4–5-3–1 3.0989 0.8541
41 4–5-2–1 2.9286 0.8157
42 4–4-5–1 3.1505 0.7745
43 4–4-4–1 2.8129 0.7728
44 4–4-3–1 2.7828 0.7787
45 4–4-2–1 2.8428 0.7749
46 4–3-5–1 3.0430 0.7644
47 4–3-4–1 3.0660 0.7958
48 4–3-3–1 2.7731 0.7648
49 4–3-2–1 2.7680 0.7771
50 4–2-5–1 2.7837 0.7753
51 4–2-4–1 3.0312 0.7719
52 4–2-3–1 2.8179 0.7724
53 4–2-2–1 3.1305 0.7527
54 4–9-1 2.8816 0.8215
55 4–8-1 2.8613 0.7841
56 4–7-1 2.8075 0.7991
57 4–6-1 2.7589 0.7750
58 4–5-1 2.9020 0.7730
59 4–4-1 3.1418 0.7747
60 4–3-1 2.8842 0.7800
61 4–2-1 3.4412 0.9475
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optimization theory because the neural network con-
verges much faster than that when other training func-
tions are used. Ninety nonwoven samples are divided
into a training set and a testing set, each with sixty and
thirty samples, respectively.

A key to successfully fit the ANN is to keep a testing
set to test the prediction capabilities of the model.
ANN models that are accurate to a high degree in-
crease the confidence of an optimization procedure.
The prediction accuracy of ANN model is related to
the type and structure of the ANN. To minimize the
prediction error, an attempt is made to study the effect
of the number of the hidden layers and hidden layer
neurons. The ANN model is designed up to three
hidden layers. To obtain a stable artificial neural net-
work, the total number of network weights and biases
can not exceed the number of training samples. Ac-
cording to this principle, the number of hidden layer
neurons can be determined as follows. The one hidden
layer ANN model has 2–9 neurons in the hidden layer.
The ANN model with two hidden layers contains 2–5
neurons in each hidden layer. And, the ANN model
with three hidden layers can only be 2–5 neurons in
each hidden layer.

RESULTS AND DISCUSSION

Table II gives the average value and variation coeffi-
cient of prediction errors of different ANN structures.
The format of the ANN structure, in the second col-
umn of Table II, is expressed as the number of neurons
in input layer, and then the number of neurons in first
hidden layer, number of neurons in second hidden
layer, number of neurons in third hidden layer, and

the number of neurons in output layer in turn. For
example, “4–5-3–3-1” means that there are 4, 5, 3, 3,
and 1 neurons in the input, first, second, third hidden
layer, and output layer, respectively. The prediction
errors of ANN model with three, two, and one hidden
layers are listed in the upper, middle, and lower part
of Table II, respectively. It can be found from Table II
that the average value and variation coefficient of
prediction error reaches the minimum (2.7999% and
0.7252) when the ANN structure is “4–5-2–3-1”. Table
III shows the weights and biases of the ANN model,
which is superior to other network structures in pre-
diction error. Figure 2 shows the correlation of mea-
sured and predicted fiber diameters. The square of

Figure 2 Correlation of measured and predicted fiber di-
ameters.

TABLE III
Weights and Biases of the ANN

Weights Biases

Weights from input layer to first hidden layer (Ŵ1) Biases for first hidden layer (b̂1)
�0.4264 0.2671 1.9024 �0.9482 2.1784
�0.6367 �1.2872 1.7320 �0.9719 �0.3061
2.3455 �1.2476 �2.3674 �1.8980 0.5268
�0.9351 1.4787 �2.8977 1.5969 �2.1249
�0.0292 2.1173 �2.7261 0.0117 0.9047
Weights from first hidden layer to second hidden layer (Ŵ2) Biases for second hidden layer (b̂2)
1.2947 2.1154 �1.3229
1.5257 �1.4402 2.8893
�4.4797 2.7253
�3.7432 0.4242
1.6276 �0.5227
Weights from second hidden layer to third hidden layer (Ŵ3) Biases for third hidden layer (b̂3)
�2.5500 �0.2358 3.5658 1.5984
1.4302 �3.0965 0.5305 �0.0353

3.5416
Weights from third hidden layer to output layer (Ŵ4) Bias for output layer (b̂4)
1.4096 1.7669
1.9083
�0.8973
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correlation coefficient is 0.9424 which confirms the
effectiveness of the established ANN model.

With the help of the established ANN model, not
only the fiber diameter can be predicted, but also the
computer simulations of the effects of the processing
parameters on the fiber diameter can be carried out.

Figure 3 shows the effects of the polymer flow rate
on the fiber diameter. As expected, lower polymer
flow rates produce finer fibers. When the polymer
flow rate is 0.018 g/s, the final fiber diameter is 53.6%
finer than that when the rate is 0.070 g/s.

Figure 4 illustrates how change of initial polymer
temperature causes change in the rate of fiber attenu-
ation. Observe that, the higher the initial polymer
temperatures, the finer the fibers will be. When the
initial polymer temperature increases to 290°C, the
final fiber diameter is 23.4% finer than that when the
temperature is 230°C.

Figure 5 gives the effect of the initial air velocity on
the fiber diameter. It can be seen that the higher initial
air velocities will cause the fibers to be attenuated
finer. The final fiber diameter corresponding to initial
air velocity of 235 m/s is 55.1% finer than that corre-
sponding to the velocity of 78 m/s.

Figure 6 shows an insignificant effect of the initial
air temperature on the fiber diameter. When the initial
air temperature increases from 280 to 340°C, the fiber
diameter only decreases about 4.8%. Therefore, high
initial air temperature contributes little to the polymer
drawing, which gives us insights on reducing the
energy consumption of the melt-blowing process.

In addition, the established ANN model can be used
for compromising the processing parameters accord-
ing to the required fiber diameter to obtain the optimal
combination of the parameters and make the process-
ing with better cost-effective ratio.

Figure 3 Effect of polymer flow rate on fiber diameter.

Figure 4 Effect of initial polymer temperature on fiber
diameter.

Figure 5 Effect of initial air velocity on fiber diameter.

Figure 6 Effect of initial air temperature on fiber diameter.
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CONCLUSIONS

An artificial neural network model is established for
predicting the fiber diameter of melt-blown nonwoven
fabrics from the processing parameters. An attempt is
made to study the effect of the number of the hidden
layers and the hidden layer neurons to minimize the
prediction error. The artificial neural network with
three hidden layers (5, 2, and 3 neurons in the first,
second, and third hidden layer, respectively) yields
the minimum prediction error, and thus is determined
as the preferred network. The square of correlation
coefficient of measured and predicted fiber diameters
shows the good performance of the model. Using the
established ANN model, computer simulations of the
effects of the processing parameter on the fiber diam-

eter are carried out. The results show great prospects
for this research in the field of computer-assisted de-
sign of melt-blowing technology.
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